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On the dynamical mechanical behaviour of 
atactic polystyrene 

F. POVOLO* 
Centre d'Etucles Nucl#aires de Grenoble, D#partment de Recherche Fondamentale, 
Service de Physique/MP. 85 X, 38041 Grenoble C#dex, France 

Data on tan ~b against frequency, reported recently in the literature, which have been obtained 
for monodisperse atactic polystyrene in the frequency range 10 -5 to 10 sec -1 and temperature 
range 359 to 374 K, are discussed. It is shown that time-temperature superposition can be 
applied to the experimental curves, if they are normalized to account for the temperature de- 
pendence of the relaxation strength. Finally, a general discussion of the translation behaviour 
of the internal friction curves, particularly for a distribution of relaxation times, is presented. 

1. Introduction 
In a recent paper, which in what follows will be referred 
to as Paper I, Cavaille et al. [1] have presented data on 
the dynamical mechanical behaviour of  monodisperse 
actactic polystyrene (tool. wt 98 000) in the frequency 
range 10 -5 to 10sec -t and temperature range 359 to 
374 K. According to the authors, the time-temperature 
superposition of  the entire data in the frequency range 
of overlap seems less than satisfactory in both the real 
and the imaginary components of  the complex shear 
modulus, G' and G", respectively. The lack of ade- 
quate superposition becomes pronounced in the tan ~b 
(G"/G') plots. Moreover, according to Paper I, the 
tan ~b plots provide a more discerning criteria for 
superposition than the G' and G" spectra. 

It is the purpose of  this work to show that the tan q5 
against frequency curves, obtained at different tem- 
peratures and presented in Paper I, do in fact super- 
pose under a translation parallel to the frequency axis, 
when the temperature dependence of the relaxation 
strength is taken into account. Furthermore, since 
scarce data have been reported in the literature on 
tan q5 against frequency, particularly for high relax- 
ation strengths, the curves reported in Paper I will be 
used as a base for a general discussion on the trans- 
lation behaviour of  the internal friction curves, par- 
ticularly when a distribution of relaxation times is 
present. 

2. Theory 
2.1. S i n g l e  re laxa t ion  t i m e  
The standard anelastic solid (SAS), which is charac- 
terized by three parameters, can be described in terms 
of Voigt unit by the equation (p. 47 of  [2]) 

JR~ + v~Ju# = ~ + v~ (1) 

where o- is the applied stress, e is the strain, JR and Ju 
are the relaxed and unrelaxed compliances, respectively, 

and z~ is the relaxation time at constant stress. The dot 
indicates a derivative with respect to the time. The 
dynamical response of such a solid is given by the real, 
(Jr)  and the imaginary (,12) components of  the dyn- 
amic compliance (p. 47 of [2]), that is 

c]J  
J l ( ( J ) )  = Ju + 1 + c02z2~ (2) 

6 Jco'c~ 
J2(co) - 1 + o~2~2o (3) 

where o) = 2rcf and f is the frequency of the applied 
stress of constant maximum amplitude, and 

6 J  = J R - J u  (4) 

gives the magnitude of the relaxation of the com- 
pliance. Formulated in terms of a Maxwell unit, the 
SAS is described (p. 47 of [2]) by 

a + ~ d  = MRe + Mu r~  (5) 

where MR and Mu are the relaxed and unrelaxed 
moduli, respectively, and re is the relaxation time at 
constant strain. The dynamical response, under a sinu- 
soidal strain of constant maximum amplitude, is given 
by the real (M~) and the imaginary (M2) components 
of the complex modulus (p. 47 of [2]), that is 

3M cgmco2-c~ 
Ml(~O) = Mu - MR + 1 + co2"c~ 1 + co2,~ 

(6) 

5Moo% 
M2(~o) - 1 + ~o2,~ (7) 

where 

5M = Mu - MR (8) 

gives the intensity of the relaxation for the modulus. 
Another dynamical quantity is the internal friction, 

*On leave from Comisidn Nacional de Energia Atdmica, Dto. de Materiales, Av. del Libertador 8250, 1429 Buenos Aires, Argentina, 
and Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Dto. de Fisica. Pabell6n 1, Ciudad Universitaria, 1428 
Buenos Aires, Argentina. 

0022-2461/89 $03.00 + .12 �9 1989 Chapman and Hall Ltd. ] 51 3 



which is given in each case by 

and 

Jz 6 Jogz~ 
- -  = 

tan ~b = Jl JR + Juo2Z2~ (9) 

M2 6Moo'c, 
tan ~b = M~ MR + Muco2'c~ (10) 

On introducing the relaxation strength A, defined as 

6 J  6 M  
A = - -  = (11) 

it is easy to show that Equations 9 and 10 can be 
reduced (p. 40 of [3]) 

A ( co'c ) ~o'c 
tan 4~ - (1 + A)  ~/2 1 -~ ~o2, 2 = 1 + co2r 

where 

and 

(12) 

A 
- (1 + A) '/: (13) 

122 = 'C~T e (14) 

'c~ = z(1 + A) ~/2 (15) 

'c = 'c,(1 + A) ~/2 (16) 

MR = 1/J~ (17) 

Mu = 1/Ju (18) 

On comparing Equations 3, 7 and 12, and taking into 
account Equations 15 and 16, it is easy to show that, 
for the case of a single relaxation time, if tan 4) is 
measured as a function of frequency a Debye peak will 
be obtained with the maximum located at the fre- 
quency o~ -- 1/'c. The maximum of the Debye peak 
for J= will be located at the frequency ~o~ --- 1/% = 
1/~(1 + A) m and the maximum for M2 will be at 
c@t2 = l/'c~ = (1 + A)~/2/'c, that is, the J2 peak will be 
located to the left and the M2 peak to the right of the 
tan ~b peak, on the frequency scale. The separation 
between the peaks will increase as h increases. This 
explains, for the case of a single relaxation time, 
Ferry's statement (p. 47 of [4]) about the location of 
the three peaks in the frequency scale. Since A can be 
very large for polymers, the separation can be of  
several logarithmic decades in frequency. As shown in 
the next paragraph, a similar situation is encountered 
for a distribution of relaxation times. Finally, since 
data obtained in polystyrene will be discussed, a nota- 
tion more usual in the literature for polymers will be 
adopted, that is [4] 

M~ = G' M2 = G " Jl = J ' 

�9 12 = J"  Mu = Gg M R = a e 

& = 4  A = J o  

6 J  = J ~ - 4  66 = G g -  G~ 

(18)  

(19) 

G g -  Ge J e - - 4  
A = 

< 4 
(20) 

and 

1514 

2.2. Distr ibut ion of relaxat ion t imes  
For a distribution of relaxation times and an experi- 
ment performed at constant stress amplitude, J '  and 
J"  are given, in terms of the retardation spectrum, L 
(p. 64 of [4]), by 

J '  = Jg + f + 2 (  L ) d O n  ' c a )  (21) -- 1 .~- ~j2"C2 

- 1 7 ~-~'c~.] d ( ln  %) (22)  

and 

ge - Jg = f ; ~  L d(ln 'co) (23) M 

The relaxation time is written as "c. to indicate that the 
stress amplitude is constant. If the distribution is nor- 
malized to unity, Equations 21 and 22 can be written 
(p. 92 of [2]) as 

q~ d(ln "Ca) 
s' = 4 + aJ j+2 2 2 = Jg -]- 6 J F l ( x , ,  7) 

1 + c o r ~  

- I + c o 2 r  d( ln  z , )  

(24) 

= 6JF:(x~ ,  7) 

(25) 

tan  q5 - 

a n d  

a" AF:(x~, 7) 
tan~b = G' - (1 + A) - AF~(x~,7) (33) 

It is easy to show that for the case of a single relaxa- 
tion time, Equations 32 and 33 reduce to Equation 12. 

The locations of the maxima of tan ~b for Equations 
32 and 33 depend, in a complicated way, on A and on 
the parameters of  the distribution. It can be shown [5], 
however, that at least for symmetrical distributions 
with a maximum located at the origin, Equations 32 

where 

(26) 

7 is some geometrical parameter of the distribution 
and 

x~ = In (~o~) (27) 

where ~ is some average relaxation time in the distri- 
bution. A similar analysis for the relaxation spectrum 
leads to 

G' = Ge + 6GF,(x , ,  7) (28) 

G" = OGF2(x~, y) (29) 

d( ln  = 1 (30)  

x~ = In (co~) (31) 

where r is the normalized relaxation spectrum. The 
subscript e indicates that the corresponding quantities 
are obtained at constant strain amplitude. Moreover, 
on taking into account Equation 20, the damping can 
be written as 

J"  AF2(x~, 7) 
- (32)  

J '  1 + A F l ( X a ,  "y) 



and 33 can be written as 

tan~b = ~F2(x ~ + x m, 7) (34) 

and 

tan~b = ~F2(x ~ - x m, ~) (35) 

where x m and x2' are the values for x, and x,, respec- 
tively, at which the maximum of  the internal friction 
occurs and ~ is defined by Equation 13. 

On comparing Equations 25 and 34, it is seen that 
the maximum of J"  occurs at x~ = 0 and that for 
tan ~b at x m > 0. Then, if tan ~b and J"  are measured 
as a function of frequency, the peak for J"  will be 
located to the left of  the peak for tan ~b. A similar 
analysis for Equations 35 and 29 leads to the con- 
clusion that the G" peak is located to the right of the 
tan ~b peak, when both are measured as a function of  
frequency. A simple comparison, as for the case of  a 
single relaxation time, cannot be made between the 
different average relaxation times since x m and x~ ' 
depend on A and 7 in a complicated manner. 

Finally, it should be pointed out that, by making a 
change of origin, Equations 34 and 35 can be reduced 
to 

tan q5 = c~F2(2, 7) (36) 

where 

2 = In (co~) (37) 

and ~ is some average relaxation time, related to ~ or 
?,~. The maximum of tan ~ will be located at 2 = 0. 

2.3. S u p e r p o s i t i o n  of  the  tan ~b cu rves  
In general, ~ (or A) and r in Equation 12 depend on 
temperature and on the parameters of the physical 
model considered. Furthermore, this equation leads to 
a Debye peak when tan q~ is plotted either as a func- 
tion of coz or as a function of  co (or f ) ,  at constant 
temperature. With the change of variables x = In co, 
y ' t a n 4 ) ,  lnv  = h(z) and z = T, where T is the 
absolute temperature, Equation 12 can be written as 

Y' _ e(z) sech [x + h(z)] (38) 
2 

The maxima, Ym, of the y' against x (or tan ~b against 
In co or In f )  curves, determined at different values of 
h(z) or z (or at different temperatures) are obtained for 

x = - h ( z )  (39) 

with values determined by 

Ym = C~(Z)/2 (40) 

Furthermore, on dividing Equation 38 by Equation 40 
leads to 

Y = Y'/Y;n = sech [x + h(z)] (41) 

and the width of the peak, at half maximum, either for 
Equation 38 or for Equatio n 41, is given by 

A(log o)  = A( logf )  = 1.144 (42) 

if z is constant. 
The scaling behaviour, that is the superposition 

property of  a family of curves in the (x, y) plane, at 

different h(z) levels, has been studied in detail [6-8]. In 
particular, the family of curves described by 

y = g[Ax + Ch(z)] (43) 

where A and C are real constants and g is a general 
function, lead to a scaling behaviour with a transla- 
tion path parallel to the abscissa. In addition 

A[h(z)l c 
- ( 4 4 )  

Ax A 

where Ax and A[h(z)] are the increments in x and h(z), 
respectively, when a point belonging to the curve for 
h(z) is translated, by a horizontal shift, to the curve 
corresponding to h(z + Az). It is evident that Equa- 
tion 41 has the form of Equation 43 with A = C = 1, 
and Equation 44 is reduced to 

a[(h(z)] 
- 1 ( 4 5 )  

Ax 

Then the y against x curves at different h(z) or z levels, 
described by Equation 41, are related by scaling with 
a translation path parallel to the abscissa, which 
means that it is possible to construct a master curve. 
In addition, the increments of x and those of h(z), 
performed during the different translations, are re- 
lated by Equation 45. The considerations made are 
not valid, however, for the curves described by Equa- 
tion 38, unless e is constant. In fact, Equation 38 is not 
simply a linear combination of the variables x, y '  and 
h(z) and, consequently, no scaling is present along any 
translation path (horizontal, vertical or at a given 
angle). In summary, if the relaxation process is des- 
cribed by Equation 12 the set of tan ~b against l o g f  
curves, at different temperatures, cannot be super- 
posed along any translation path, unless c~ is indep- 
endent of temperature. The normalized (tan ~b/tan qSm) 
against log f curves, where tan 05 m is the maximum 
value of tan q5 for each curve, can then be superposed 
through a translation path parallel to the log f axis, 
that is, the time-temperature superposition is applic- 
able and a master curve can be constructed. In addi- 
tion, the increments in temperature and those of  r, 
performed during the different translations are related 
by Equation 45, that is 

A[log r(T)] 
- 1 ( 4 6 )  

A(log f )  

It should be pointed out that all the considerations 
made are independent of the temperature dependence 
of c~ and ~. A more detailed analysis of the translation 
property of a Debye peak, including also the case 
where f depends on temperature, has been presented 
elsewhere [9]. A similar situation is encountered when 
a distribution of relaxation times is present, since 
Equations 32 and 33 have the form of Equation 43, 
with h(z) = In ~ or In ~ and y = tan ~b, if~ and 7 do 
not depend on temperature. This means that the tan ~b 
against log fcurves  can be superposed along a transla- 
tion path parallel to the log faxis .  This is not the case, 
however, if~ and 7 depend on temperature. On assum- 
ing that 7 does not depend on temperature, since the 
internal friction can be represented by Equation 36, 
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Figure 1 Normalized tan q5 against frequency curves, at different 
temperatures, for atactic polystyrene. Tan ~b m is the max imum value 
of  tan q~ for each curve. 

then 

tan q~ F2(2, 7) 
y = - (47) 

tan q~m f 2 ( 0 ,  ~) 

will lead to an equation similar to Equation 43 with 
x = lne)  and ln~ = h(z). This implies that the 
normalized tan q5 against log f curves, measured at 
different temperatures, can be superposed along a 
translation path parallel to the log faxis ,  even when a 
distribution of relaxation times is present, if 7 does 
not change with temperature. 

Finally, it should be pointed out also that similar 
considerations can be made for the translation of J', 
J", G' and G" (see Equations 21, 22, 28 and 29) 
but in terms of the temperature dependence of 6J and 
6G. 

3. A p p l i c a t i o n s  
The tan q~ against l o g f  curves measured at different 
temperatures and reported in Fig. 3a of  Paper I [I] are 
shown here, after normalization, in Fig. 1. It is evident 
from the figure that they can be superposed, within 
experimental error, by a translation parallel to the 
log./axis.  The master curve, obtained by translating 
the rest of the curves on to the one for 371.6K, is 
shown in Fig. 2, where the full curve represents the 
data for 371.6K and the broken curves indicate the 
dispersion obtained on superposing the different curves. 
On taking into account the experimental error, which 
is higher at the tails of the peaks due to a contribution 
of  the background, it can be stated that the super- 
position is acceptable. The values obtained for A(log f )  
and AT, during the different translations, are indicated 
in Table I. Moreover, observation of Figs 1 and 2 shows 
that the normalized peaks are symmetrical. The width 
of  the peak at half maximum, obtained from the 

1.00 

0.75 

~ t 3  

0.5C 

0.25 
~ ~ 

I /  \',~ 
I /*  "&, 

x i I i I ~ .... T 
-4  -3 -2 -1 0 1 2 

Log [ f  (sec-~)] 

Figure 2 ( ) Master curve constructed from the curves of  
Fig. 1 by superposing the rest of  the curves on to the curve for 
371.6K; ( - - - - - )  dispersion obtained during the superposition; 
(x) fit to a log-normal distribution of relaxation times with/~ = 1.6. 

master curve, is 

A( logf )  = 1.76 (48) 

which is substantially larger than the value given by 
Equation 42. This indicates that tan q5 is not described 
by Equation 12, that is, the relaxation process does not 
depend on a single relaxation time and a distribution 
of relaxation times is present. Moreover, according to 
Equation 46 

A[log f(T)] 
- 1 ( 4 9 )  

A(logf )  

If it is assumed that the average relaxation time 
changes with temperature according to an Arrhenius 
relationship, that is 

= ~0 exp (g /kr )  (50) 

where ~0 is the pre-exponential factor, H is the activa- 
tion enthalpy and k is Boltzmann's constant, at the 
reference temperature Ts the relaxation time ~s is 

~?~ = "~0 exp (H/kT~) (51) 

Then 

;) = ~-  (52) 

T A B L E  I Increments of  frequency and temperature during the 
translations perforined to match the rest of  the curves of  Fig. 1 to 
the one for 371.6K, to construct the master  curve shown in Fig. 2 

T (K) A(log f )  AT (K) [A(logf)/A(1/T)] 
(K) • 10 -4 

373.9 - 0 . 5  2.3 3.02 
371.6 0 0 - 
369 0.6 --2.6 3.16 
367.5 1.0 - 4 . 1  3.33 
364.5 1.76 - 7.1 3.36 
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A(logf )  

with 

which combined with Equation 40 leads to 

A(lnf) /A T = k- 

(53) 

Then, the ratio between the increments of l o g f  
and those of  T-~ should be constant, if H does not 
depend on temperature. As shown by the last column 
of Table I, A(log f)/A(1/T) changes only slightly with 
temperature, with an average value 

A ( l o g f ) / A ( 1 )  = 3.22 x 104K (54) 

leading to 

H = 617kJmol  -~ (55) 

It should be pointed out that an expression similar to 
Equation 53 would be obtained if the relaxation time 
changes according to (Ch. 11 of  [4]) 

= a~(Tg) (56) 

where ~ is given by Equation 50 and ~(Tg) is the 
relaxation time at the glass transition temperature. 

On assuming that the maximum of  tan ~b is at co~ = 
1, taking for co the value at which the maximum 
for T = 371.6K occurs, that is, co = 0.13sec -~, 
Equation 50 leads to 

r0 = 1.6 X 10 -87 sec (57) 

when the value given by Equation 55 is used for H. It 
is evident that the value for f0 given by Equation 57 is 
abnormally low and H given by Equation 55 is too 
high, indicating that Equation 50 does not describe 
the temperature dependence of ~. 

A relationship frequently used to describe the 
temperature dependence of the relaxation time in 
polymers ([4] (Ch. l l) and [10]) is 

= ~0exp k ( T -  To) 

where H~ is the activation enthalpy when T tends to 
infinity and To is an empirical constant. It can be 
shown easily that Equation 58 leads to 

In ~ - k (To-  T~)(Ts-- To) + T -  T~ 

= A(ln~) = - A ( l n f )  (59) 

which can be written as 

T - T s  
= - C, (T~) (60) 

C2(Ts) q- T -  T~ 

and 

c ,  (T,) = (61) 
k(T, - To) 2.303 

C2(T~) = T~ - To (62) 

Equation 60 is the very well known Williams-Landel- 
Ferry (WLF) expression [11]. Furthermore, this 
equation can be written as 

- ( T  - T~) ! G ( T s )  
- ( T -  T~)  + - -  ( 6 3 )  

A(log/ )  C~ (T,) C, (Ts) 

A 
T g 

<~ 
/ 

-10 -5 0 5 
~r(K)  

Figure 3 Plot of the data given in Table I in the way suggested 
by Equation 62, to obtain the parameters of the WLF equation. 

A plot of (T - T~)/A(logf) = AT/A(logf) against 
T - T S = ATshould then give a straight line of slope 
1/G (Ts) and intercept C2(Ts)/G (T~). Once C1 and C2 
are known, H~ and To can be determined by using 
Equations 61 and 62. The data of Table I are plotted 
in Fig. 3 in the way suggested by Equation 63. A 
least-squares fit to the data with T~ = 371.6 K leads to 
the straight line shown in the same figure and to the 
following values for the constants: Cl = 16 and 
C2 = 70K, with a correlation coefficient of  0.97. 
Equations 61 and 62 then lead to T o = 301.4K, H~/ 
k = 2548K and H~o = 21kJmol  i. Furthermore, 
for col = 1, co = 0.13s J, T =  371.6K and the 
values given previously for Ho~/k and To, Equation 58 
leads to 

r0 = 1.3 x 10-~Ssec (64) 

The constants of  the WLF relationship, when the 
reference temperature is taken as Tg, are related to 
those of  the reference temperature Ts [4, 7, 12] by 

C, (T 0 C2(T~) = C, (Tg) C2(Tg) (65) 

C2(T~) = C2(Tg) - Tg + T~ (66) 

If the glass transition temperature for polystyrene is 
taken as 369 K, Equations 65 and 66, with the measured 
values for G(Ts)  and C2(Ts), lead to Cl(Tg) = 15.2 
and C2(Tg) = 72.6K. 

It is interesting to study how well the internal fric- 
tion peaks can be described by some usual distribution 
of  relaxation times. Nowick and Berry [13] have tabu- 
lated the function F2(2, fl) for a log-normal retarda- 
tion spectrum, where fl is a measure of the half-width 
of the distribution at the point where it falls to 1/e of  
its maximum value. Furthermore, they have given a 
procedure to determine the parameter fl from the peak 
width at half maximum for J"  of  tan ~b or, which is 
equivalent, for F2. On using the measured value for 
the peak width at half maximum, as given by Equation 
48, Fig. 3 of  [13], which gives the dependence of the 
peak width at half maximum on fl, and the values 
tabulated in [13] for Fz(0, fl), lead to 

fi = 1.6 (67) 

Once fl is known, tan ~b can be calculated by using 
Equation 47 and the values for F2(2, fl) given in [13]. 
The values of tan ~b calculated in this way, for the 
curve at 371.6 K, are indicated by the crosses in Fig. 2. 
It is seen that the general behaviour of the internal 
friction is described fairly well by a log-normal distri- 
bution in C The deviation at the tails of the peak might 
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T A B L E  11 tan ~b,, as obtained from the curves reported in Fig. 
3a of Paper I l l ]  and A calculated with Equations 68 and -13, with 
F2(0, 1.6) = 0.36 

T(K)  tan q~m A x 10 -2 

373.9 5.24 2.17 
371.6 5.37 2.28 
369 6.02 2.87 
367.5 6.34 3.18 
364.5 7.47 4.41 

be due to a contribution of the background or to the 
fact that the retardation spectrum is not strictly log- 
normal. Moreover, according to Equation 36 

tan q5 m = ~F2(0,/7) (68) 

so that c~ can be determined from the measured values 
of tan ~bm and F2(0, /7) tabulated in [13]. Once ~ is 
known, h can be calculated by using Equation 13 
which, even if it is a quadratic equation, leads to a 
unique value of A with physical significance. Then, the 
values of tan ~bm reported in Fig. 3a of Paper I [1] and 
F2(0, 1.6) = 0.36 lead to the values of A reported 
in the last column of Table II, at each temperature. 
The measured values of tan ~bm are also indicated 
in this table. 

The temperature dependence of the relaxation 
strength of solids usually obeys a Curie-Weiss law [2], 
that is 

T,. 
A - (69) 

T - - T ~  

where T~ is some critical temperature and T., is related 
to the physical model considered and to the characteris- 
tics of the specimen. Equation 69 can be rearranged as 

AT = T., + T~A (70) 

showing that, if Equation 69 is satisfied, a plot of AT 
against A should be linear with slope T~ and intercept 
T,. The data given in Table II are plotted in Fig. 4 in 
the way suggested by Equation 70, where it is evi- 
dent that Equation 69 is satisfied. Moreover, a least- 
squares fit to the data leads to 

T~ = 356K Z, = 371.5K (71) 

with a correlation coefficient of 0.99999. 

4 .  D i s c u s s i o n  
The tan q5 data have been fitted in Paper I [l] to the 

b 15 

1o 

5 

0 i 
2 

I 

s 
Axl0 -2 

Figure 4 Plot of the parameters given in Table II, according to 
Equation 70, to obtain Z, and T~. 
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Vogel-Fulcher-Tanman equation 

f = A exp T - T o 

where A, B and To are empirical constants related to 
the WLF equation, that is 

\f(TO} 
where 

B = 

C~(T0( r -  Tg) (73) 
C2(T~) + ( r -  Tg) 

2.303 C~ (Tg) C2(Tg) (74) 

B 
CI(T~) = 2.303(/"8 - To) (75) 

C2(Tg ) = T g -  To (76) 

Since, according to Paper I, the tan ~b against log f 
curves could not be superposed to construct a master 
curve, Equation 72 was applied to the experimental 
data by using the frequency at the maximum, for each 
temperature, and Tg = 369 K, leading to C~ (Tg) = 14, 
C2(Tg) = 53K, B = 1700K and To = 367.5K. It 
should be pointed out, however, that these results are 
incongruent since if To = 367.5 K and Tg = 369 K 
then, according to Equation 76, C2(Tg) = Tg - To = 
1.5K. For consistency, To = 369 - 53 = 316K, 
which is a value closer to the one obtained from a 
shifting of the normalized peaks (To = 301.4 K), that 
is, by using Equation 62. Fig. 5 shows a plot of log f,, 
against I / ( T -  To), where fm is the frequency at 
the maximum loss, obtained from Fig. 1, and T o = 
301.4K. A plot of  1Ogfm against l /T i s  also shown in 
Fig. 5. It can be seen that both representations are 
linear. Furthermore, a least-squares fit to the log fro 
against lIT data leads to ~0 = 2.0 x 10 87 sec and 
H = 623kJmol - ! ,  with a correlation coefficient of 
0.998. These values are quite similar to those given 
by Equations 55 and 57, respectively. It was assumed 
in these calculations that Equation 50 holds and 
2rCfm~ = 1. 

A least-squares fit to the Iogfm against I/(T -- To) 
data, shown in Fig. 5, leads to the following values for 
the Vogel-Fulcher-Tanman equation (Equation 72): 
A = 5.2 x 10~3sec -~ and B = 2490K, with a cor- 
relation coefficient of 0.999. Moreover, Equations 75 
and 76 lead to C1 = 16 and C2 = 68K, when these 
values are taken for A and B, and Tg = 369 K. On 
assuming that 27rfm~ = 1 a comparison between 
Equations 72 and 58 leads to B = Hoo/k and ~0 = 
1/2A which, with the values of A and B given pre- 
viously, give: ~0 = 3.1 x 10 15 secand H~ = 20.7kJ 
tool J. These values are quite similar to those obtained 
from a shifting of the normalized peaks. In summary, 
the results obtained by a shifting of the normalized 
internal friction curves, that is, by applying the time- 
temperature superposition, are nearly the same as 
those obtained from the position of the maxima, as 
indicated in Table IlI. 

The values for ~0 given in Table lII seem reasonable 
when compared with the reciprocal of the Debye fre- 
quency. It should be pointed out that even if ~0 gives 
the most probable value, the distribution is not very 
wide as indicated by the value of/7 given by Equation 
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Figure 5 Plot of log fro, where fm is the frequency at the 
maximum for each curve of Fig. 1, against l IT  (Curve B) 
and against 1/(T - To) (Curve A) with T o = 301.4K. 

67 and the peak width at half maximum for tan ~b 
(Equation 48) compared with the one for a single 
relaxation time (Equation 42). Moreover, the values 
for H~, given in the same table seem also reasonable 
when compared with the potential energy barrier 
hindering the rotation of an organic compound [14]. 

It is interesting to make some comments on the 
results given by Equation 71, that is, on the para- 
meters of the Curie-Weiss temperature dependence of 
the relaxation strength. Since no physical model is 
available, it is difficult to give a precise meaning to the 
parameters of Equation 69, in particular to T,. Tc can 
be considered as a critical temperature below which 
the molecular units, which reorient under the applied 
stress and produce the relaxation, will reorient spon- 
taneously even in the absence of an applied stress. 
It might be possible that Tc indicates the real glass 
transition temperature for the material. In fact, it is 
very well known that the value of Tg depends on the 
experimental technique used, that is, on the sensitivity 
of the method employed. It is recognized in Paper I [1] 
for example, that the value Tg -- 369 4- 1 K, as deter- 
mined by means of a thermal analyser and on heating, 
is only approximate since the annealing effects below Tg 
cause the measured transition temperature to be differ- 
ent from the one obtained during cooling. Conse- 
quently, this may not be the material-characterizing 
glass transition temperature. 

Finally, if an attempt is made to compare A and "~ 
as obtained from the internal friction curves with the 
values given by G' and G" against log f curves, also 
reported in Paper I, several difficulties are encoun- 
tered. The G" curves reported in Fig. 1 of Paper I do 
not show well-defined maxima, as should be expected 
from Equation 29 if F2(2,:, fl) is similar to F2(2, fi). 
Furthermore, no clear correlation can be established 
between ~,: and ~, as for the case of a single relaxation 
time. It should be pointed out that, with the internal 

T A B L E  I I I  Comparison between the values obtained for the 
different parameters, either from a shifting of  the normalized 
internal friction curves (s) or from the position of  the maxima in 
frequency (m), for Tg = 369 K 

c~(rg) q(r~) ~o (sec) /4~ To (K) 
(K) (kJ mol l) 

15.2 (s) 72.6 (s) 1.3 x l0 -15 (s) 21 (s) 301.4 (s) 
16 (m) 68 (m) 3 x 10 -15 (m) 20.7 (m) - 

friction pendulum used in Paper I, tan q~ is measured 
directly [15], together with the input and output 
voltages. G' and G" are calculated from these quan- 
tities. A reference voltage is generally used which 
means, in principle, that the measurements are per- 
formed at constant maximum stress amplitude. If this 
is the case, the data should be represented in terms 
of J '  and J". In fact, if the curves for G" in Fig. l 
of Paper I are converted.to J"  by using the expression 
(p. 13 of [4]) 

1 
J"  = (77) 

G"[1 + (tan qS) -z] 

no maxima are found in the frequency region consi- 
dered, except for a slight bending over of the curve for 
373.9 K at the lowest frequencies. All this poses the 
question of the meaning of the relaxation times at 
constant stress or at constant strain during dynamical 
experiments, since these two quantities are operation- 
ally well defined only for static experiments. This 
problem will not be discussed further, since it is 
beyond the purpose of this paper. 

5. Conclusions 
Internal friction data on atactic polystyrene, reported 
recently in the literature, have been discussed. It has 
been shown that time-temperature superposition can 
be applied to the experimental curves if they are nor- 
malized properly, to account for the temperature 
dependence of the relaxation strength. Furthermore, 
the same values were obtained for some physical para- 
meters, like the relaxation time and the activation 
enthalpy, from a shifting of the peaks as from the 
location of the maxima in frequency. The values 
obtained for the constants of the WLF equation are 
quite similar to those reported in the literature for the 
same material. 

Finally, a general discussion on the superposition 
properties of the internal friction peaks was also 
presented. 
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